
Finding Important Stack Frames in Large Systems
Aleksandr Khvorov§∗, Yaroslav Golubev†, Denis Sushentsev∗

∗JetBrains, †JetBrains Research, §Constructor University
{aleksandr.khvorov, yaroslav.golubev, denis.sushentsev}@jetbrains.com

Abstract—In this work, we developed, integrated, and tested a
feature that automatically highlights potentially important frames
in stack traces. The feature was implemented in the internal
bug-processing tool at JetBrains that processes tens of millions
of stack traces. We surveyed 18 developers at JetBrains who
provided valuable feedback on the idea and the implementation.

I. INTRODUCTION, BACKGROUND, & EXISTING SYSTEM

Large public-facing software systems attract a lot of bug
reports from users, and efficiently processing them is crucial
for the success of the products [1], [2]. Often, the users do not
write detailed reports with explicit problems, and the developers
have to work with stack traces, i.e., ordered lists of method
calls (stack frames) that led to the error [3], [4], [5], [6].

JetBrains is a large vendor of tools for software developers
and teams, including IDEs such as IntelliJ IDEA [7] and
PyCharm [8]. With millions of users, our company receives
tens of millions of stack traces that need to be processed. To
support this, JetBrains has an internal tool that collects and
deduplicates incoming stack traces, as well as provides an
interface for developers to study them in detail.

The default process, as it was before this work, can be seen
on the left side of Figure 1. After the developer is assigned to
the issue [9], they open the stack trace to study it (a). The tool
specifies subsystems (in green) and provides some metadata,
but, importantly, does not bring one’s attention to any frame
in particular. During their analysis, developers often manually
select frames that they consider to be important, with the result
looking as (b), where the developer selected frames 1 and 2 as
important. This is a crucial functionality, because it is saved and
shared between the developers, facilitating faster processing
of the same or a similar issue in the future. However, stack
traces are often long and the error is often in the middle, so
we believe that the situation could be helped by automatically
pre-highlighting potentially important frames for the developer.

II. APPROACH, SURVEY, & RESULTS

Approach. The UI for the feature that we implemented can
be seen on the right side of Figure 1. Instead of an empty
stack trace as in (a), one can see that in (c), frames 2 and 3
are pre-highlighted as potentially important with bold text and
a red exclamation sign icon on the left. When the developer
manually selects frames 1 and 2 (d), they are highlighted
exactly as before. This UI is noticeable yet at the same time
unobtrusive: the suggestions are initially visible, but if the
developer made their manual choice (whether selecting the
suggestions or not), the suggestions do not interfere with this
much more visible manual choice.

Fig. 1. The course of work (a-b) in the pre-existing system without the feature,
(c-d) with the proposed feature. The top part shows the initial UI of viewing
a stack trace, the bottom — after manually selecting important frames.

As for the way to suggest the frames, our initial version uses
inverse document frequency (IDF) [10] over the full corpus of
received stack traces. In the given stack trace, three frames with
the highest IDF (i.e., the frames that are the rarest in the corpus)
are highlighted. The simple logic here is that the rarest frames
might contain the most specific information about a particular
stack trace. Highlighting top-3 frames instead of having a fixed
threshold serves to not confuse the developer by sometimes
having no suggestions and sometimes suggesting too much for
a rare issue. In principle, other selection methods can be used
with the same UI, incorporating product-specific information,
dynamic analysis, AI models, etc. In this form, with IDF under
the hood, the feature was bundled into production, and is now
displayed for all developers at the latest version.

Survey methodology. To evaluate our feature, we conducted
a simple survey, asking developers to rate the usefulness and
the visualization on 1–5 Likert scales, as well as to provide
additional comments. We contacted 25 JetBrains developers
from diverse products, 18 of whom confirmed that they recently
used the tool and saw this feature, so we used their responses.

Results and future work. For the usefulness of the feature,
the mean score was 3.6 out of 5. For the convenience of
visualization, it was 4.0 out of 5, being mostly positive, with
minor suggestions that relate to the coloring and the icons. In
terms of major improvements, developers suggested having a
tooltip that would teach them what this highlighting is (since
it is not obvious). Also, they wanted the feature to motivate its
selection in some way. One developer expressed their desire to
correct the model so that it learns on the go. Thus, instead of
IDF, it seems valuable to apply modern AI models [11], which
can provide better results and explicitly motivate their choice.
We hope that this work provides insight into the problems
encountered when processing stack traces in large software
systems and the key aspects of solving them.



REFERENCES

[1] T. Dhaliwal, F. Khomh, and Y. Zou, “Classifying field crash reports
for fixing bugs: A case study of Mozilla Firefox,” in 2011 27th IEEE
International Conference on Software Maintenance (ICSM), 2011, pp.
333–342.

[2] N. Jalbert and W. Weimer, “Automated duplicate detection for bug
tracking systems,” in 2008 IEEE International Conference on Dependable
Systems and Networks With FTCS and DCC (DSN), 2008, pp. 52–61.

[3] N. Modani, R. Gupta, G. Lohman, T. Syeda-Mahmood, and L. Mignet,
“Automatically identifying known software problems,” in 2007 IEEE
23rd International Conference on Data Engineering Workshop, 2007, pp.
433–441.

[4] K. Bartz, J. W. Stokes, J. Platt, R. Kivett, D. Grant, S. Calinoiu,
and G. Loihile, “Finding similar failures using callstack similarity,” in
SysML08: Third Workshop on Tackling Computer Systems Problems with
Machine Learning Techniques, 2008.

[5] N. Karasov, A. Khvorov, R. Vasiliev, Y. Golubev, and T. Bryksin,

“Aggregation of stack trace similarities for crash report deduplication,”
arXiv preprint arXiv:2205.00212, 2022.

[6] E. Shibaev, D. Sushentsev, Y. Golubev, and A. Khvorov, “Stack trace
deduplication: Faster, more accurately, and in more realistic scenarios,”
arXiv preprint arXiv:2412.14802, 2024.

[7] JetBrains. (Accessed: 01.12.2024) IntelliJ IDEA. [Online]. Available:
https://www.jetbrains.com/idea/

[8] ——. (Accessed: 01.12.2024) PyCharm. [Online]. Available: https:
//www.jetbrains.com/pycharm/

[9] D. Sushentsev, A. Khvorov, R. Vasiliev, Y. Golubev, and T. Bryksin,
“DapStep: Deep assignee prediction for stack trace error representation,”
in 2022 IEEE International Conference on Software Analysis, Evolution
and Reengineering (SANER). IEEE, 2022, pp. 184–195.

[10] J. Lerch and M. Mezini, “Finding duplicates of your yet unwritten bug
report,” in 2013 17th European conference on software maintenance and
reengineering, 2013, pp. 69–78.

[11] X. Du, M. Liu, J. Li, H. Wang, X. Peng, and Y. Lou, “Resolving crash
bugs via large language models: An empirical study,” arXiv preprint
arXiv:2312.10448, 2023.

https://www.jetbrains.com/idea/
https://www.jetbrains.com/pycharm/
https://www.jetbrains.com/pycharm/

	Introduction, Background, & Existing System
	Approach, Survey, & Results
	References

