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Figure 1: A possible UI for the proposed approach.

ABSTRACT
LLMs change the landscape of software engineering, and the ques-
tion arises: “How can we combine LLMs with traditional teach-
ing approaches in computer science?” . In this work, we propose
to teach students in a low-code environment of code generation, de-
veloping not only their coding but also decomposition and prompt-
ing skills.
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CCS CONCEPTS
•Computingmethodologies→Artificial intelligence; • Social
and professional topics → Software engineering education; •
Human-centered computing→ Interactive systems and tools.
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1 APPROACH
Research shows that LLMs are crucial for teaching students both
higher-level concepts and the practical skills of prompting that are
increasingly important [4, 5, 7, 8]. The key idea of our approach is
to use intelligent prompt engineering to teach algorithmic thinking
and decomposition [6], while combining it with code generation
and direct coding. Figure 1 shows a potential UI for this.

Firstly, the students learn the basics of task decomposition so that
they can work with the program at the level of functions (1). Then,
for the given task, the student describes the necessary algorithm in
natural language using intelligent prompt engineering (2), meaning
that the prompt may contain code if the student is already familiar
with some programming concepts. The student can RUN a particular
description block (2) to see the current version of the generated code
in the draft section (3) and the errors in it. Importantly, the errors
are highlighted in both blocks (4). In our vision, the student can
only fix errors in the description, but we are considering making it
possible in the draft section too. Finally, the student can CHECK their
solution, generating all the code and launching the task’s tests (5).

2 TECHNICAL DETAILS
For the pilot, we will focus on Kotlin [2], integrating our solution
into the in-IDE learning format [3] of the JetBrains Academy plu-
gin [1]. We will create a special domain-specific language to provide
description and draft editor blocks, and use completion to help with
the prompt. The IDE setting allows us to use static analysis to:

(1) check whether students only use defined variables and func-
tions in the code parts of the description block;

(2) analyze the model’s output to ensure that the code directly
defined in description stays the same.

We will also create a grammar to teach the students to write
concrete prompts (see (2)) and highlight if their prompt is too vague.

3 POSSIBLE EVALUATION
We plan a pilot evaluationwith first-year bachelor students. Half the
students will get the traditional MOOC experience, solving a given
course with only code. The other half will get more exercises on task
decomposition and prompting at the beginning, and then the same
course with the proposed approach integrated. After completing
the course, we will give both groups a separate task and compare
their performance. The planned research questions are:
RQ1: What are the students’ perceptions of the proposed approach?
RQ2: How does the proposed approach affect the speed of solving

tasks?
RQ3: How does the proposed approach affect code quality?
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