
Using a Low-Code Environment to Teach
Programming in the Era of LLMs

Anna Potriasaeva
JetBrains Research
Belgrade, Serbia

anna.potriasaeva@jetbrains.com

Katsiaryna Dzialets
JetBrains

Munich, Germany
katsiaryna.dzialets@jetbrains.com

Yaroslav Golubev
JetBrains Research
Belgrade, Serbia

yaroslav.golubev@jetbrains.com

Anastasiia Birillo
JetBrains Research
Belgrade, Serbia

anastasia.birillo@jetbrains.com

1

2

3

4

5

Figure 1: A possible UI for the proposed approach.

ABSTRACT
LLMs change the landscape of software engineering, and the ques-
tion arises: “How can we combine LLMs with traditional teach-
ing approaches in computer science?” . In this work, we propose
to teach students in a low-code environment of code generation, de-
veloping not only their coding but also decomposition and prompt-
ing skills.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICER ’24 Vol. 2, August 13–15, 2024, Melbourne, VIC, Australia
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0476-5/24/08
https://doi.org/10.1145/3632621.3671429

CCS CONCEPTS
•Computingmethodologies→Artificial intelligence; • Social
and professional topics → Software engineering education; •
Human-centered computing→ Interactive systems and tools.

KEYWORDS
Programming Education, MOOC, LLMs, Generative AI

ACM Reference Format:
Anna Potriasaeva, Katsiaryna Dzialets, Yaroslav Golubev, and Anastasiia
Birillo. 2024. Using a Low-Code Environment to Teach Programming in
the Era of LLMs. In ACM Conference on International Computing Education
Research V.2 (ICER ’24 Vol. 2), August 13–15, 2024, Melbourne, VIC, Australia.
ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/3632621.3671429

https://doi.org/10.1145/3632621.3671429
https://doi.org/10.1145/3632621.3671429


ICER ’24 Vol. 2, August 13–15, 2024, Melbourne, VIC, Australia Anna Potriasaeva, Katsiaryna Dzialets, Yaroslav Golubev, and Anastasiia Birillo

1 APPROACH
Research shows that LLMs are crucial for teaching students both
higher-level concepts and the practical skills of prompting that are
increasingly important [4, 5, 7, 8]. The key idea of our approach is
to use intelligent prompt engineering to teach algorithmic thinking
and decomposition [6], while combining it with code generation
and direct coding. Figure 1 shows a potential UI for this.

Firstly, the students learn the basics of task decomposition so that
they can work with the program at the level of functions (1). Then,
for the given task, the student describes the necessary algorithm in
natural language using intelligent prompt engineering (2), meaning
that the prompt may contain code if the student is already familiar
with some programming concepts. The student can RUN a particular
description block (2) to see the current version of the generated code
in the draft section (3) and the errors in it. Importantly, the errors
are highlighted in both blocks (4). In our vision, the student can
only fix errors in the description, but we are considering making it
possible in the draft section too. Finally, the student can CHECK their
solution, generating all the code and launching the task’s tests (5).

2 TECHNICAL DETAILS
For the pilot, we will focus on Kotlin [2], integrating our solution
into the in-IDE learning format [3] of the JetBrains Academy plu-
gin [1]. We will create a special domain-specific language to provide
description and draft editor blocks, and use completion to help with
the prompt. The IDE setting allows us to use static analysis to:

(1) check whether students only use defined variables and func-
tions in the code parts of the description block;

(2) analyze the model’s output to ensure that the code directly
defined in description stays the same.

We will also create a grammar to teach the students to write
concrete prompts (see (2)) and highlight if their prompt is too vague.

3 POSSIBLE EVALUATION
We plan a pilot evaluationwith first-year bachelor students. Half the
students will get the traditional MOOC experience, solving a given
course with only code. The other half will get more exercises on task
decomposition and prompting at the beginning, and then the same
course with the proposed approach integrated. After completing
the course, we will give both groups a separate task and compare
their performance. The planned research questions are:
RQ1: What are the students’ perceptions of the proposed approach?
RQ2: How does the proposed approach affect the speed of solving

tasks?
RQ3: How does the proposed approach affect code quality?

REFERENCES
[1] 2024. JetBrains Academy Plugin. Retrieved June 6, 2024 from https://plugins.

jetbrains.com/plugin/10081-jetbrains-academy
[2] 2024. Kotlin. Retrieved June 6, 2024 from https://kotlinlang.org/
[3] Anastasiia Birillo, Maria Tigina, Zarina Kurbatova, Anna Potriasaeva, Ilya Vlasov,

Valerii Ovchinnikov, and Igor Gerasimov. 2024. Bridging Education and Devel-
opment: IDEs as Interactive Learning Platforms. arXiv preprint arXiv:2401.14284
(2024).

[4] Adrienne Decker, Mark Allen Weiss, Brett A Becker, John P Dougherty, Stephen H
Edwards, Joanna Goode, Amy J Ko, Monica M McGill, Briana B Morrison, Manuel
Pérez-Quiñones, et al. 2022. Piecing Together the Next 15 Years of Computing
Education Research Workshop Report. In Proceedings of the 53rd ACM Technical
Symposium on Computer Science Education V. 2. 1051–1052.

[5] Paul Denny, Juho Leinonen, James Prather, Andrew Luxton-Reilly, Thezyrie
Amarouche, Brett A Becker, and Brent N Reeves. 2024. Prompt Problems: A
New Programming Exercise for the Generative AI Era. In Proceedings of the 55th
ACM Technical Symposium on Computer Science Education V. 1. 296–302.

[6] Gerald Futschek. 2006. Algorithmic Thinking: The Key for Understanding Com-
puter Science. In International conference on informatics in secondary schools-
evolution and perspectives. Springer, 159–168.

[7] James Prather, Paul Denny, Juho Leinonen, Brett A Becker, Ibrahim Albluwi,
Michelle Craig, Hieke Keuning, Natalie Kiesler, Tobias Kohn, Andrew Luxton-
Reilly, et al. 2023. The Robots Are Here: Navigating the Generative AI Revolution
in Computing Education. In Proceedings of the 2023 Working Group Reports on
Innovation and Technology in Computer Science Education. 108–159.

[8] Matti Tedre and Henriikka Vartiainen. 2023. K-12 Computing Education for the
AI Era: From Data Literacy to Data Agency. In Proceedings of the 2023 Conference
on Innovation and Technology in Computer Science Education V. 1. 1–2.

https://plugins.jetbrains.com/plugin/10081-jetbrains-academy
https://plugins.jetbrains.com/plugin/10081-jetbrains-academy
https://kotlinlang.org/

	Abstract
	1 Approach
	2 Technical details
	3 Possible evaluation
	References

